__STYLES__

HALLOWEEN • CANDY-Picker [🏆Winner Fan Favorite & HM]

Tools used in this project
HALLOWEEN • CANDY-Picker [🏆Winner Fan Favorite & HM]

Halloween Candy Picker

About this project

🎃 Halloween is creeping up, and you know what that means—Candy Season is here! 🍬 Using data from 296,000 matchups and 85 different Candy Types, I’ve created the ultimate Candy-Picker. Just choose your candy preferences, and it will instantly reveal the top 3 treats you’re sure to love! Need candy for someone else and don’t know what to get because you do n ot know their prefrences? Let Mr. Pumpkin lend a hand and help you pick the perfect sweets mix (Out of 3 Candies) that are guaranteed to be a hit! 🍭👻

I decided to go for a Candy-Picker because in my opinion Halloween should be fun! And with the Candy-Picker you can also identify easily Dracula's Tip for the MIX OF 3 ALL TIME BEST CANDY FOR EVERY FLAVOR. Which is the perfect Mix to buy for a Give Away if you do not know the other person's preferences. By hovering over the nose of Mr. Pumpkin, they will be revealed.

Project Data

Project data: CSV table

Data Transformation

Ingredients

As some data were given in a non optimized way I splitted out the ingredients in a separate table.

undefinedFor candies where all the given categories were false, I created an entry in the 'Others' column. After doing so, I transformed the table into a list with only two columns, eliminating the false and null entries. This resulted in a list where I can filter the data by the given ingredients.

undefinedAs I wanted to display all the ingredients, I created a column in a third table by performing some transformations. That column was later merged into the main table

undefinedData Model

So the final data model looks like that.

undefinedSugar and Price

The percentile of the price and sugar was used to categorize the Candies into

Low - percentile <=0.33

Middle - percentile <=0.667

High - percentile > 0.667

Furthermore a Sugar Rank and a Price Rank was calculated out of the percentile. To give the user a feeling how the Candy ranks compared with the 85 Candies. Rank 1 means it is the highest price or the highest sugar content.

Rank = (1-p)*(n+1) where n = 85

After doing this the model was ready to go :)

The Visualization

As I've been working on a lot of business cases lately, I wanted this challenge to be more of a fun project. So, I decided to create a Candy Picker—because I personally love tests that let you discover something. My idea was to design a Halloween-themed Candy Picker where users can choose their preferences and receive three candy recommendations. To ensure three foolproof options, I introduced 'Mr. Pumpkin.' If you're unsure about anything, you can hover over Mr. Pumpkin's nose, and he will suggest a mix of three candies for every flavor..

Winning Candy Mix

With the Candy Picker it was also easy to determine a winnign candy mix, Because I could see for every flavor the top 3 candies. And in some flavors they were pretty similar. So I put an eye on chosing low sugar if possible and choosing a Candy of every flavor.

DAX Measures

To achieve this, I wrote several DAX measures that filter out the first, second, and third best candies based on the ingredients and their win percentage.

PCA-Analysis

Inspired by the great video of Alice Zaho I tried to do the PCA Analysis with RStudio to double check my choices. It was not as easy as I thought But in the end it worked out.

To do so I used this R-Code:

install.packages("factoextra")
install.packages("ggplot2")

#Load libraries
library(factoextra)
library(ggplot2)

str(candy_data)
summary(candy_data)

Candy_Sample <-candy_data[,-c(1,11)]

Candy_pca<-prcomp(Candy_Sample,center=TRUE, scale=TRUE)

summary(Candy_pca)

names(Candy_pca)

Candy_pca$x

fviz_eig(Candy_pca,addlabels=TRUE,ylim=c(0,70))

fviz_pca_biplot(Candy_pca)

The result of that was this picture with the contribution of the nine dimensions

undefinedAnd the plot where you can see the clusters:

undefined

Afterwards I copied the factors for Dimension 1 and Dimension 2 and used them in Power BI to create a Scatterplot. For doing that I added some Jitter in Power Query to avoid multiple dots being exactly in one place.

undefinedThe Scatterplot can be filtered by winpercent, Sugar Content and Price Segment.

undefined

WRAP UP

I really loved this project because it allowed me to get creative with the design, and since I love Halloween, it was a perfect match. It also fit well within the required time frame, as the data was minimal, and with a few clever tricks, I could easily use it to create the Candy Picker. I hope you enjoy it as much as I did, and have fun picking your favorite Halloween candy!

Additional project images

Discussion and feedback(24 comments)
comment-1931-avatar
Marjolein Opsteegh
Marjolein Opsteegh
about 1 month ago
Looking awesome...!! Not only your dashboard but also your explanations above, including power query and statistics. For the win!!

comment-1945-avatar
Yovani Pillay
Yovani Pillay
about 1 month ago
Your dashboard looks awesome Jasmin. I love the detail of analysis and storytelling that went into creating this project.

comment-1986-avatar
Khaled El Sherbiny
Khaled El Sherbiny
30 days ago
great dashboard and funny themes, i loved it :), i was wondering how can i get such themes and icons, im new to PBI and wanted to give life to my reports and dashboards :)

comment-1990-avatar
Alaa Osama
Alaa Osama
29 days ago
Great work, Jasmin! I love it. How did you create the tooltip in that size and format?

comment-1994-avatar
Hisham Ahmed
Hisham Ahmed
29 days ago
Great work and dashboard

comment-2008-avatar
Andy Behar
Andy Behar
28 days ago
hi Jasmin, great work! I really like the design.

comment-2149-avatar
Bigyandutt Panda
Bigyandutt Panda
25 days ago
Amazing work on the Dashboard .

comment-2185-avatar
Irina Cojocariu
24 days ago
I originally saw your first version of the project, which had a simpler approach, and thought it was great. But I love how you built up on it and turned it into a complex solution while keeping the design consistent!
2000 characters remaining
Cookie SettingsWe use cookies to enhance your experience, analyze site traffic and deliver personalized content. Read our Privacy Policy.